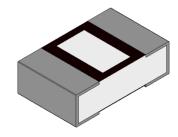


SCRR0805SD Series Thick Film Current Sensing Resistor

(Lead / Halogen Free)

Reversion History:

REV.	Issue date	Description
A0	2021/3/16	New Approval
A1	2022/5/17	Chang the table paper hole size/ Table paper and volume quantity

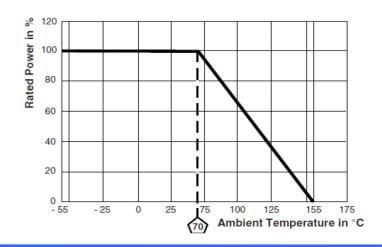


SCRR0805SD Series Thick Film Current Sensing Resistor

(Lead / Halogen Free)

Features / Applications :

- High power rating is up to 1/2W
- Current sensing resistor for power supplies, motor circuits, etc.
- RoHS compliant
- Suitable for reflow soldering



Electrical Specifications:

Characteristics	Feature
Power Rating*	1/2 W
Resistance Range	$0.02\Omega{\sim}0.5\Omega$
Temperature Coefficient of Resistance(ppm/°C)	±100
Resistance Tolerance	±1%(F), ±2%(G), ±5%(J)
Operation Temperature Range	-55°C ∼ +155°C

*Note

For sensor operated at ambient temperature in excess of 70°C, the maximum load shall be derated in accordance with the following curve.

DOCUMENT: SCRR0805SD

: A1

Outline Drawing:

Type Designation:

SCRR 0805 S D - □ □ □ □ □ □ □ (1) (2) (3) (4) - (5) (6)

Note:

- (1) Series No.
- (2) Size
- (3) S= Short terminal type
- (4) Power Rating : D = 1/2W
- (5) Resistance value:

The "R" shall be used as a decimal point, For example --

 $R100 = 0.1\Omega;$

(6) Tolerance (%)

F=±1%, G=±2%, J=±5%

: A1

Characteristics:

Electrical

Item	Specification and Requirement	Test Method (JIS 5201)	
Temperature	As electrical specifications	Room temperature	
Coefficient of		Room temperature +100°C	
Resistance(ppm/°C)			
Short Time Overload	△R: ± 0.5%	2.5 x rated power for 5 seconds	
	Without damage by flashover, spark,		
	arcing, burning or breakdown		
Insulation Resistance	Over 100 M Ω on Overcoat layer face up	(1) Setup as figure 1	
	Over 1,000 M Ω on Substrate side face up	(2) Test voltage: 100VDC±15VDC	
		(3) Test time: 60 + 10 / - 0 seconds	
Voltage Proof	Resistance range: ± 1.0%	(1) Setup as figure 1	
	Without damage by flashover, spark,	(2) Test voltage: 400VAC(rms.)	
	arcing, burning or breakdown	(3) Test time: 60 + 10 / - 0 seconds	

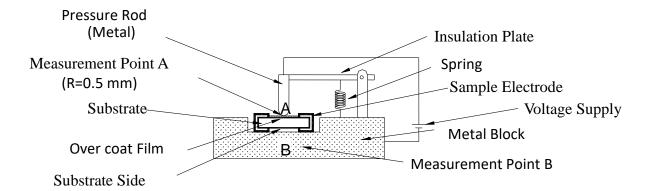
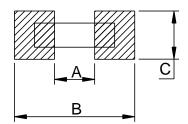


Figure 1 : Measurement Setup

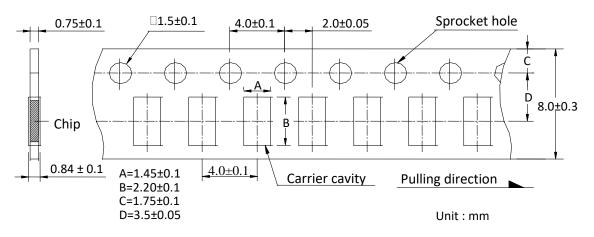
Mechanical


Item	Specification and Requirement	Test Method (JIS 5201)	
Solderability The surface of terminal immersed shall be		Solder bath:	
	minimum of 95% covered with a new	After immersing in flux, dip in 245 \pm 5 $^{\circ}$ C	
	coating of solder	molten solder bath for 2 ± 0.5 seconds	
Resistance to Solder △R: ± 1.0%		Immersed at solder bath of	
Heat	Without distinct deformation in	$260 \pm 5^{\circ}$ C for 10 ± 1 seconds	
	appearance		
Bending Test	△R: ± 1.0%	Bending value: 2 mm for 60 ± 1 seconds	
	Without mechanical damage such as		
	break		
Solvent Resistance	Without mechanical and distinct damage	(1) Solvent: Trichloroethane or	
	in appearance	Isopropyl alcohol	
		(2) Immersed in solvent at room	
		temperature for 300 seconds	
Vibration	△R: ± 0.5%	MIL-STD-202 Method 204	
	Without mechanical damage such as	5g's for 20 minutes, 12 cycles each of 3	
	break	orientations. Test from 10-2000Hz.	
Mechanical Shock	△R: ± 0.5%	MIL-STD-202 Method 213	
	Without mechanical damage such as	100g's peak value, 6ms,	
break		Half-sine waveform, 12.3ft/sec.	

Endurance

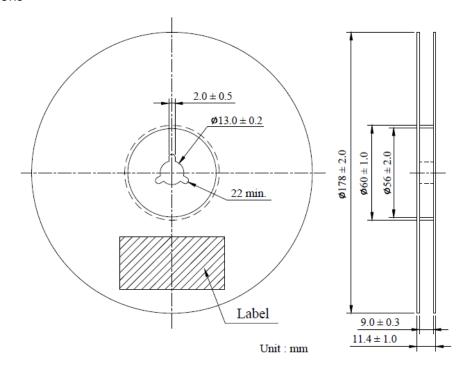
Item	Specification and Requirement	Test Method	
Rapid Change of Temperature	△R: ± 1.0% Without distinct damage in appearance	MIL-STD-002 Method 107 1000 cycles, (-55°C~125°C) 30min maximum dwell time at each temperature.	
Moisture with Load	△R: ± 5.0% Without distinct damage in appearance	MIL-STD-202 Method 103 1000 hours, 85° C/85%R.H, applied for 10% rated power Measurement at 24 ± 4 hours after test conclusion.	
Load Life	△R: ± 5.0% Without distinct damage in appearance	MIL-STD-202 Method 108 70°C, applied for 100% rated power 1.5 Hour ON, 0.5 Hour OFF For total 1000 hours.	
Low Temperature Store	△R: ± 5.0% Without distinct damage in appearance	Store temperature:-55 ± 3°C for total 1,000 hours	
High Temperature Store	△R: ± 5.0% Without distinct damage in appearance	MIL-STD-202 Method 108 155℃ for total 1,000 hours.	

Recommend Land Pattern Dimensions:



Size	А	В	С	t
	(mm)	(mm)	(mm)	(mm)
1220	0.8	2.80	1.40	0.105

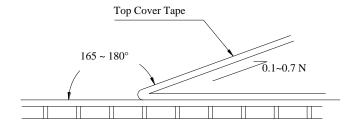
t: Copper foil minimum thickness of PCB


Packaging:

Tape packaging dimensions

Remark: Leader tape length≥30 cm(150 Hollow carrier cavity)

Reel dimensions


Numbers of Taping: 5,000 pieces /reel

The following items shall be marked on the reel.

- (1) Type designation.
- (2) Quantity
- (3) Manufacturing date code
- (4) Manufacturer's name

Peel force of top cover tape

The peel speed shall be about 300 mm/min. The peel force of top cover tape shall be between 0.1 to 0.7 N.

8

DOCUMENT: SCRR0805SD

: A1

Care Note:

Care note for storage

- (1) Chip resistor shall be stored in a room where temperature and humidity must be controlled. (temperature 5 to 35°C, humidity 45 to 85% RH) However, a humidity keep it low, as it is possible.
- (2) Chip resistor shall be stored as direct sunshine doesn't hit on it.
- (3) Chip resistor shall be stored with no moisture, dust, a material that will make solderability inferior, and a harmful gas (Chloridation hydrogen, sulfurous acid gas, and sulfuration hydrogen).

Care note for operating and handling

- (1) It is necessary to protect the edge and protection coat of resistors from mechanical stress.
- (2) Handle with care when printing circuit board (PCB) is divided or fixed on support body, because bending of printing circuit board (PCB) mounting will make mechanical stress for resistors.
- (3) Resistors shall be used with in rated range shown in specification. Especially, if voltage more than specified value will be loaded to resistor, there is a case it will make damage for machine because of temperature rise depending on generating of heat, and increase resistance value or breaks.
- (4) In case that resistor is loaded a rated voltage, it is necessary to confirms temperature of a resistor and to reduce a load power according to load reduction curve, because a temperature rise of a resistor depends on influence of heat from mounting density and neighboring element.
- (5) Observe Limiting element voltage and maximum overload voltage specified in each specification
- (6) If there is possibility that a large voltage (pulse voltage, shock voltage) charge to resistor, it is necessary that operating condition shall be set up before use.